Multirotor UAV propeller development using Mecaflux Heliciel

Sale rates of multirotor unmanned aerial vehicles, for both private and commercial uses, are growing very rapidly these days. Even though there are still legal restrictions in some countries, demand for multirotors with long flight times is significant. Only a few propellers available off the shelf are optimized for multirotor use. They are often designed for small unmanned aircrafts and don't provide high efficiency at hover.

Many companies are facing the challenge of designing their own propellers to increase flight times of their products. Mecaflux Heliciel is very well suited for this task. It doesn't require many years of engineering experience to design the propeller. The process is very easy and all you have to do is to understand conditions in which propeller is going to work.

This tutorial describe the process of propeller design for multirotor aircraft step by step.

1. The first step is to start a new project simply by clicking:

Files \rightarrow New project (from model) \rightarrow New propeller (thrust generation)

2. Now let's take a look under the tab Project specifications → Fluid and click on the button Change ambient fluid. In Gaz tab choose Air. Then decide in which temperature your propeller is going to operate. If you develop a multirotor for inspecting oil pipes in Alaska the design could vary from the design for filming tropical forest. When you choose temperature go to the next step. You will be asked to enter an altitude. Both parameters of temperature and altitude can influence angles of attack in different parts of a propeller therefore they could change the efficiency.

<u>者</u>	Study propeller in the Air at 201,600 km/h (7 blades of 0,9 m at 740rpm)	- 6 ×
Files Edit View Prototyping update available: Venice/0.2.2.9 date 27/08/2014 Parameters		
Fluid velocity m / s Rotation speed Rpm	🖸 🕼 1: Project specifications 🝃 2: Blade geometry 🕼 3: Optimize 🛕 Alerts(4) Tools (Optional) 😻 3D prototype	-
	1.1. Puid 1.2: Goal 1.3 Operating point	
56m/s 201,6km/h 108,9 knots 740 Rev / min Blade tip251,1km/h	Air	
	press vap sat 100000Pes. 1.012kg/m3	
Advancement = V/ (D Rps) = 2/5 V blade tip / V flad = 1,3	Speed of sound in the Build in the / sec	
	331 Overge the embert fluid	
A state of		
- A lower sole along the bard page.		
CD CL Drag Lift Moments Thrusts Ruid velocity Ruid angles Profiles Angles Strength Pressures Torque axis Y	Delta pressure Axial force (X) and Y-axis Homent Torque N m around axis X Power Bloancy Sn	larty
		43.30 43.30 54.00 54
Marked No.	DA1613000180(01) C==19	

The basic window after creating a new project

ress vap sat: 100000Pas. 100000Pas. 100000Pas. 100000Pas. 100000Pas. 100000Pas. 100000Pas. 100000Pas. 100000 Speed of sound in the fluid in m / sec 331 Change the ambient fluid Editeur de Viscosité - température fluides Température 100000162 0 0/Kg à 1 bar 100000162 10000162 10000162 10000162 10000162 10000162 10000162 10000162 10000162 10000162 10000162 100000162 100000162 100000162 100000021 100000021 100000021 1000000021 100000202 100000202 100000202 100000202 100000202 100000202 100000202 100000202 100000202 100000202 100000202 100000202 100000202 100000202 100000202 1000020 10000020 1000020 1000020 1000020 1000020 1000020 1000020 1000020 1000020 1000020 1000020 1000020 1000020 1000020 1000020 1000020 10000020 10000020 1000020 1000020 10000020 10000020 10000020 10000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 100000 100000 100000 100000 1000000 100000 100000 100000 100000 1000000 1000000 1000000 1000000 1000000 100000 1000000 1000000 1000000 100000 1000000 100000000	A i						
ess vap sat: 100000Pas. scoety dyn: 1.712E-05Pas/sec ² 0'c 331 Change the ambient fluid	AIF						
ess vap as: 100000Pas scostly dyn: 1.712E-05Pas/sec² 331 Change the ambient fluid Editeur de Viscosité-température fluides Inductive de Viscosité -température fluides Inductive de Viscosité Vap.Sat. Masse vol. Inductive de Viscosité Vap.Sat. Masse vol. Impérature Viscosité Vap.Sat.	1000000	1.010 (-2					
scoaty dyn: 1,712E-05Pas/sec ³ 0° Signed of sound in the fluid in m / sec 31 Change the ambient fluid Editeur de Viscosité-température fluides Fluide sélectionné: au H20 a fair eau H20 a fair au H20 a fair a	ess vap sat: 100000Pas.	1,012kg/m3					
ipped of sound in the fluid in m / sec 331 Change the ambient fluid Editeur de Viscosité-température fluides Fluide sélectionné: Air Température sélectionnée D 20 0 0 0 0 28,95 0 0 0 0 0 28,95 0 0 0 0 0 0 0 0 0 0	acosity dyn: 1,712E-05Pas/sec ²	0°c					
331 Change the ambient fluid Editeur de Viscosité-température fluides Fluide sélectionné: Air Température Chaleur latente Masse 20 0 0 0 28,95 g/moles 28 u H2O Image the ambient fluid 0 0 28,95 g/moles 0	peed of sound in the fluid in m / sec						
Editeur de Viscosité-température fluides Fluide sélectionné: Air Température Chaleur latente Masse gaz Air • <td>331</td> <td>Change the ambient fluid</td> <td></td> <td></td> <td></td> <td></td> <td></td>	331	Change the ambient fluid					
Editeur de Viscosité-température fluides Fluide sélectionné: Air Température sélectionnée Chaleur latente de vaporisation Masse molaire 20 0 0 28,95 g/mole 0 1/kg à 1 bar 28,95 g/mole 0 0,0000162 1 1,376 0 0,00001712 1 1,275 20 0,00001809 1 1,112 400 0,00001904 1 1,112 60 0,0000219 1 0,986 100 0 100 200 0,0000220 1 0,736 100 0 100 200 0,00002972 1 0,608 100 0,0000301 1 0,517 600 0,0000306 1 0,399 800 0,000043 1 0,324 - <							
Fluide sélectionné: Air Température Chaleur latente Masse Liquides Gaz 0 0 28,95 0 0 28,95 g/mole 0 O 0 0 0 1/Kg à 1 bar g/mole 28,95 g/mole 0 28,95 g/mole 0 28,95 g/mole 0 1,376 0 0 0 0 1,376 0 0,0000162 1 1,376 0 0,00001712 1 1,275 20 0,00001809 1 1,188 40 0,00001904 1 1,112 60 0,0000219 1 0,933 1 0,933 1 0,933 150 0,000024 1 0,933 150 0,00002972 1 0,608 300 0,00002972 1 0,608 300 0,00003301 1 0,517 600 0,00003906 1 0,399 800 0,0000443 1 0,324 1 0 0 0 0 0 0 0,324 0 0 0 0,324 0 0 0<			Editeu	r de Viscosit	é-températ	ture fluides	
Liquides Gaz molaire eau H2O Air Image: Construction of the second seco	-Fluide sélectionné:	Air		Températu	re Chak	eur latente	Masse
eau H20 Air O 28,95 ° Celcius J/Kg à 1 bar g/mole 0 0,0000162 1,376 0 0,0000162 1,1,376 0 0,00001712 1,1,275 20 0,00001712 1,1,275 20 0,00001904 1,1,112 60 0,00001904 1,1,112 60 0,00001998 1,045 200 0,00002089 1 100 0,0000219 1 0,933 150 0,000024 1 0,823 200 0,0000301 1 0,517 600 0,0000301 1 0,517 600 0,0000301 1 0,517 600 0,0000301 1 0,517 600 0,0000301 1 0,324 200 0,0000443 1 0,324 200 0,0000443 1 0,324 200 0,0000443 1 0,324 200 </td <td>Liquides</td> <td>Gaz</td> <td></td> <td>selectionne</td> <td>e dev</td> <td>aporisation</td> <td>molaire</td>	Liquides	Gaz		selectionne	e dev	aporisation	molaire
Celcius J/Kg à 1 bar g/mole 0 Celcius J/Kg à 1 bar g/mole	eau H20	Air	-	20		0	28,95
Températur. Viscosité Vap.Sat. Masse vol. -20 0,0000162 1 1,376 0 0,00001712 1 1,275 20 0,0000180 1 1,188 400 0,00001904 1 1,112 60 0,00001998 1 1,045 300 250 200 0,00002089 1 0,986 100 0,0000219 1 0,933 150 0,000024 1 0,823 200 0,0000202 1 0,736 300 0,0000301 1 0,517 600 0,0000301 1 0,517 600 0,0000301 1 0,324 400 0,0000301 1 0,324 - - -		J		° Celcius	J/K	g à 1 bar	g/moles
450 1 1,376 400 0,0001712 1 1,275 20 0,0001809 1 1,188 40 0,0001904 1 1,112 60 0,00001904 1 1,112 60 0,00001904 1 1,112 60 0,00001904 1 1,112 60 0,00002089 1 0,986 100 0,0000219 1 0,933 150 0,000024 1 0,823 200 0,0000202 1 0,736 300 0,0000202 1 0,735 300 0,0000202 1 0,735 300 0,000024 1 0,823 200 0,0000202 1 0,736 300 0,00002972 1 0,608 400 0,0000301 1 0,324 0 0,0000443 1 0,324 0 0,0000443 1 0,324 0 0,0000443 1 0,324 0 0				Temnératur	Viscosité	Van Sat	Masse vol
0 0,00001712 1 1,275 20 0,00001712 1 1,118 400 350 1 1,112 300 250 0 0,0000198 1 1,112 60 0,0000198 1 1,045 80 0,00002089 1 0,986 100 0,0000219 1 0,933 150 0,000024 1 0,823 200 0,0000202 1 0,736 300 0,000024 1 0,823 200 0,0000202 1 0,736 300 0,000024 1 0,823 200 0,0000202 1 0,736 300 0,00002972 1 0,608 400 0,0000301 1 0,517 600 0,0000396 1 0,324 0 Axe vertical: viscosité dynamique en Pascal.seconde x 10e7 (Pa-s) Axe Horizontal:Température en Degrés Celsius Pa.s Bars Kg / M3 à 1 bars				-20	0.0000162	1	1.376
450 0,0001809 1 1,188 400 350 1 1,112 60 0,0001998 1 1,045 300 200 0,0000219 1 0,986 100 0,0000219 1 0,983 150 0,000024 1 0,823 200 0,0000202 1 0,736 300 0,0000202 1 0,736 300 0,0000202 1 0,736 300 0,0000202 1 0,736 300 0,0000202 1 0,736 300 0,0000202 1 0,736 300 0,0000202 1 0,736 300 0,0000202 1 0,736 400 0,0000301 1 0,517 600 0,00003906 1 0,324 0 0 0,000443 1 0,324 0 0 0,000443 1 0,324 0				0	0,00001712	1	1,275
450 400 0,00001904 1 1,112 60 0,00001998 1 1,045 350 300 250 100 0,0000219 1 0,933 250 200 400 0,0000219 1 0,933 150 0,000024 1 0,823 200 0,0000202 1 0,736 300 0,000024 1 0,823 200 0,000024 1 0,823 200 0,00002972 1 0,608 400 0,0000301 1 0,517 600 0,0000396 1 0,324 400 0,0000443 1 0,324 400 0,0000443 1 0,324 400 0,0000443 1 0,324 400 0,0000443 1 0,324 400 0,0000443 1 0,324 400 0,0000443 1 0,324 400 0,0000443 <				20	0,00001809	1	1,188
400 60 0,00001998 1 1,045 350 300 9 1 0,986 300 250 100 0,0000219 1 0,933 250 200 0,000024 1 0,823 200 0,000024 1 0,823 200 0,0000202 1 0,736 300 0,00002972 1 0,608 300 0,0000301 1 0,517 600 0,00003906 1 0,399 800 0,0000443 1 0,324 0 0 0,0000443 1 0,324 0 0 0,0000443 1 0,324 0 0 0,0000443 1 0,324 0 0 0,0000443 1 0,324 0 0 0 0 0 0 Axe vertical: viscosité dynamique en Pascal.seconde x 10e7 (Pa-s) 8 Bars Kg / M3 à 1 bars	450 -			40	0,00001904	1	1,112
350 80 0,00002089 1 0,986 300 250 100 0,0000219 1 0,933 250 200 0,0000224 1 0,823 200 0,0000202 1 0,736 -100 100 200 300 400 500 600 700 800 450 -00000202 1 0,736 300 0,00002972 1 0,608 300 0,0000301 1 0,517 600 0,0000306 1 0,399 800 0,0000443 1 0,324 - - - Axe vertical: viscosité dynamique en Pascal.seconde x 10e7 (Pa-s) * Pa.s Bars Kg / M3 à 1 bar						4	1.045
300 100 0,0000219 1 0,933 250 200 150 0,000024 1 0,823 200 456 100 200 300 400 500 600 700 800 -100 0 100 200 300 400 500 600 700 800 1 0,399 800 0,000043 1 0,324 0 0,324 0 0,324 Axe vertical: viscosité dynamique en Pascal.seconde x 10e7 (Pa-s) * Celcius Pa.s Bars Kg / M3 à 1 bar	400			60	0,00001998	1	1,045
250 150 0,000024 1 0,823 200 450 0,00002602 1 0,736 -100 0 100 200 300 0,00002972 1 0,608 300 0,0000301 1 0,517 600 0,0000443 1 0,399 800 0,0000443 1 0,324 - - - Axe vertical: viscosité dynamique en Pascal.seconde x 10e7 (Pa-s) * Celcius Pa.s Bars Kg / M3 à 1 bars	400			60 80	0,00001998 0,00002089	1	0,986
200 200 0,00002602 1 0,736 150 150 300 0,00002972 1 0,608 -100 0 100 200 300 400 0,0000301 1 0,517 600 0,00004301 1 0,399 800 0,0000443 1 0,324 Axe vertical: viscosité dynamique en Pascal.seconde x 10e7 (Pa-s) ° Celcius Pa.s Bars Kg / M3 à 1 bit	400			60 80 100	0,00001998 0,00002089 0,0000219	1	0,986
Image: height of the second	400			60 80 100 150	0,00001998 0,00002089 0,0000219 0,000024	1 1 1 1	0,986 0,933 0,823
-100 0 100 200 300 400 500 600 700 800 400 0,00003301 1 0,517 600 0,00003906 1 0,399 800 0,0000443 1 0,324 Axe vertical: viscosité dynamique en Pascal.seconde x 10e7 (Pa-s) ° Celcius Pa.s Bars Kg / M3 à 1 bars Axe Horizontal:Température en Degrés Celsius ************************************	400 350 300 250 200			60 80 100 150 200	0,00001998 0,00002089 0,0000219 0,000024 0,00002602	1 1 1 1 1	0,986 0,933 0,823 0,736
Axe vertical: viscosité dynamique en Pascal.seconde x 10e7 (Pa-s) • Celcius Pa.s Bars Kg / M3 à 1 bases	400 350 300 250 200 +160			60 80 100 150 200 300	0,00001998 0,00002089 0,0000219 0,000024 0,00002602 0,00002972	1 1 1 1 1 1	0,986 0,933 0,823 0,736 0,608
Axe vertical: viscosité dynamique en Pascal.seconde x 10e7 (Pa-s) • Celcius Pa.s Bars Kg / M3 à 1 backet de la	400 350 300 250 200 -100 0 100 200 300	400 500 600 700 80	10	60 80 100 200 300 400	0,00001998 0,00002089 0,0000219 0,000024 0,00002602 0,00002972 0,00003301	1 1 1 1 1 1 1	0,986 0,933 0,823 0,736 0,608 0,517
Axe vertical: viscosité dynamique en Pascal.seconde x 10e7 (Pa-s) Axe Horizontal:Température en Degrés Celsius	400 350 300 250 200 -100 0 100 200 300	400 500 600 700 80	10	60 80 100 200 300 400 600	0,00001998 0,00002089 0,0000219 0,000024 0,00002602 0,00002972 0,00003301 0,00003906	1 1 1 1 1 1 1 1	0,986 0,933 0,823 0,736 0,608 0,517 0,399
Axe vertical: viscosité dynamique en Pascal.seconde x 10e7 (Pa-s) ^o Celcius Pa.s Bars Kg / M3 à 1 be Axe Horizontal:Température en Degrés Celsius	400 350 300 250 200 -100 0 100 200 300	400 500 600 700 80	10	60 80 100 200 300 400 600 800	0,00001998 0,00002089 0,0000219 0,0000240 0,00002602 0,00002972 0,00003906 0,00003906	1 1 1 1 1 1 1 1 1 1	1,043 0,986 0,933 0,823 0,736 0,608 0,517 0,399 0,324
Axe nonzontai: remperature en l'bégrés Ceisius	400 350 300 250 200 -100 0 100 200 300	400 500 600 700 80	10	60 80 100 200 300 400 600 800	0,00001998 0,00002089 0,0000219 0,00002602 0,00002972 0,00003301 0,00003906 0,0000443	1 1 1 1 1 1 1 1 1	0,986 0,933 0,823 0,736 0,608 0,517 0,399 0,324
	400 350 300 250 200 150 -100 0 100 200 300 Axe vertical: viscosité dynamique en Pasca Axe vertical: viscosité dynamique en Pasca	400 500 600 700 80	10	60 80 100 200 300 400 600 800 800	0,00001998 0,00002089 0,0000219 0,00002602 0,00002972 0,00003906 0,00003906 0,0000443 Pa.s	1 1 1 1 1 1 1 1 1 1 1 1 1 Bars	0,986 0,933 0,823 0,736 0,608 0,517 0,399 0,324 Kg / M3 à 1 bar

Ambient fluid tab

- 3. Right after that go to the Goal tab and choose Propeller.
- 4. In the next step go to the **Operating point** tab. **Air velocity** is probably the most important parameter in terms of propeller efficiency in a multirotor. If we would develop a propeller for a model aircraft we would enter high air velocity value. In multirotors we want to achieve the maximum efficiency at hover. It means that you have to enter low value like 0.1 m/s. You can't enter 0 because program uses this value for some calculations and it would cause errors. Number a little higher than 0 is fine there is always some wind. If you want to develop multirotor for continuous forward flight feel free to enter high velocity. Just keep in mind that this isn't speed of the flight but speed of air in propellers axis (which isn't horizontal in multirotors).
- 5. The next parameter under the same tab is **propeller rotation speed**. If you already chose an electric motor find what is the rotational speed at maximum efficiency and enter that speed. You will adjust this parameter later either way.

I: Project specifications	: Optimize 🥡 Alerts(3)	Tools (Optional)
1.1: Fluid 1.2: Goal 1.3: Operating point		
Enter fluid velocity upstream of the blade m/s: 0,1 0,194 noeuds 0,360 km/h Enter the volume flow m3/sec in the duct upstream of the propeller		
0,2471148 m3/h = 889,6133	T	
Enter propeller rotation speed if known	rad/sec 3000	ea =u
3000 propeller shaft rotation speed (rpm)	rpm relative	v
A speed not compatible with the fluid velocity, can lead to Use the Optimize tab, search for optimum speed, can avo	o the impossible cases ope oid the impossible cases.	erating point (masking blades, torques or negative thrust)
Restore operation points to the last point of design		

Tab with air velocity and propeller rotation speed

6. At this point it's time to go to the next tab named Blade geometry and under that Blade dimensions. The first parameter you should adjust is radius at blade tip. This is basically radius of the propeller. As an example enter radius of 16" propeller which is 203.2 mm. You can also change Base blade radius. This is a radius of center part of the propeller, most likely defined by diameter of the motor.

2.1: Blade dimensions	2.2: Profiles Law	Advanced Geometry			
Blade length Base blade radiu	is =17,5% Of the b	ade tip radius	Radius mm 35,6	Enter radius at blade 203,2	tio mm Diameter mm 406,4
Blade width Chord at the roo	ot of the blade mm	distribution Chords		blade tip chord	0
35	5	linear	ize 🏼	12,000	01
Distribution equat	ion: Chord =	-0,0004381207 .r²+	-0,03260823 .r+	36,71611 Apply th	e chords equation

Blade dimensions tab

7. Now let's move to the Blade width. These parameters are going to influence thrust, torque and therefore efficiency of propeller. You have to experiment with values to achieve the highest efficiency at thrust you need. Adjusting width of the blade also help to prepare propeller to manufacturing process. If you develop very small propeller you may want to use high width values to make sure that cross sections aren't too thin. At the beginning adjust Chord at the root, Blade tip chord and distribution Chords to make your blade look like this:

This is how blades of most modern multirotor propellers are shaped.

8. In the next tab named **Profiles Law** try to find most efficient airfoils. If you are not an aerodynamics engineer you have to know a few things. There isn't only one best airfoil. Airfoils tend to perform different under different conditions. It depends on

airfoil length, air velocity, temperature and pressure of air. That's why you shouldn't use an airfoil from full sized helicopter in small multirotor.

Click on the button named **select the default profile**. It opens another window where you can find a table with data of all airfoils in database. To choose probably the best one click to sort the table in a way that airfoils with the highest **f_max** parameter will be on top. Then click on the profile on top. After that all you have to do is to click the button named **Default profile (profile law)**

9. The last step before seeing some results is to go to **Optimize** tab where you can adjust blade number. Most propellers for multirotors have 2 blades because it gives the best efficiency in most cases. Unless you want to achieve higher thrust without changing other parameters like radius of the blade you should choose 2 blades. Now only click on an icon right to the save icon ³².

Part of an optimize tab

Congratulations! You just designed your first propeller. On the bottom part of Heliciel window there are all important parameters like thrust, torque and efficiency. You will probably notice that propulsive efficiency is very low. That's because this number depends on air velocity which is very low in case of multirotors (we entered 0.1 m/s). Just compare kinetic efficiency with an improved design.

3D prototype of propeller

There is still a lot to adjust to make a propeller perform better.

10. Open Editor calculation notes by clicking on an appropriate icon III. Scroll table to the right until a column named **Reynolds** appears. It's the most important number in search for the best airfoil for you propeller. For multirotor purposes Reynolds numbers will be under 100000. Heliciel database of airfoils is limited to NACA profiles but many other airfoils were invented. You can search for them in databases in the internet. If you decide to do that Reynolds number will be helpful. In search engines of the internet databases you can choose Reynolds number that your propeller will

operate in. Choose an appropriate Reynolds number and look for airfoils with the highest drag to lift ratio. Take under considerations that very thin profiles can be impossible to manufacture and not stiff enough to work properly. When you find an interesting profile you can download .dat file, import it in Heliciel and test if it improves you propellers performance.

11. After finding a better profile you can go back to adjusting blade width. Try many combinations to find the most efficient one. Changing blade width is going to have an influence on Reynolds number. After significant changes in blade dimensions you may have to go back to search of the best airfoil.

Heliciel is a powerfull tool for everyone from hobbysts to professional propeller design companies. Ease of use will be appreciated by every user because it simply save time during the process. It also helps to focus on perfecting propeller parameters which is the key to efficient design.